GENERATORS FOR $A(\Omega)$

BY N. SIBONY AND J. WERMER

ABSTRACT. We consider a bounded domain Ω in \mathbb{C}^n and the Banach algebra $A(\Omega)$ of all continuous functions on $\overline{\Omega}$ which are analytic in Ω . Fix f_1, \ldots, f_k in $A(\Omega)$. We say they are a set of generators if $A(\Omega)$ is the smallest closed subalgebra containing the f_i . We restrict attention to the case when Ω is strictly pseudoconvex and smoothly bounded and the f_i are smooth on $\overline{\Omega}$. In this case, Theorem 1 below gives conditions assuring that a given set f_i is a set of generators.

1. Introduction. Let Ω be a bounded domain in \mathbb{C}^n . $A(\Omega)$ denotes the algebra of all continuous complex-valued functions on $\overline{\Omega}$ which are holomorphic on Ω . With $||f|| = \max_{\overline{\Omega}} |f|$, $A(\Omega)$ is a Banach algebra.

Fix $f_1, \ldots, f_k \in A(\Omega)$. Denote by $[f_1, \ldots, f_k \mid \overline{\Omega}]$ the uniform closure on $\overline{\Omega}$ of the algebra of all polynomials in f_1, \ldots, f_k . We say that the f_i form a set of generators for $A(\Omega)$ if $[f_1, \ldots, f_k \mid \overline{\Omega}] = A(\Omega)$.

Our problem is to decide when a given set f_1, \ldots, f_k is a set of generators for $A(\Omega)$.

Two immediate necessary conditions are:

- (1) The f_i separate points on $\overline{\Omega}$.
- (2) The matrix $((\partial f_i/\partial z_j))$, $1 \le i \le k$, $1 \le j \le n$, has rank n at each point $z \in \Omega$.

Note that (1) implies that $k \geq n$.

To be able to find sufficient conditions, we impose the following restrictions on Ω : \exists a function ρ of class C^4 and strictly plurisubharmonic in some neighborhood of $\overline{\Omega}$ such that $\Omega = \{z \mid \rho(z) < 0\}$, and grad $\rho \neq 0$ on $\partial\Omega$.

In this case it is known (see Appendix (A.1)) that the spectrum of the Banach algebra $A(\Omega)$ coincides with $\overline{\Omega}$.

Fix $f_1, \ldots, f_k \in A(\Omega)$. Put $K = \{(f_1(z), \ldots, f_k(z)) \mid z \in \overline{\Omega}\}$. In order that the f_i be a set of generators it is now necessary that

(3) K is polynomially convex in \mathbb{C}^k .

We shall also assume that the f_i are smooth up to the boundary of Ω . For each multi-index $I = (i_1, \ldots, i_n)$, put

$$|I| = \sum_{p=1}^{n} i_p$$
 and $D^I = \frac{\partial^{|I|}}{\partial z_1^{i_1} \cdots \partial z_n^{i_n}}$

Presented to the Society, June 25, 1973 under the title Generators for some uniform algebras; received by the editors May 23,1973.

AMS (MOS) subject classifications (1970). Primary 32E25, 32E30.

Key words and phrases. Domain in Cⁿ, generators, Banach algebra, polynomial convexity.

Copyright © 1974, American Mathematical Society

Definition 1. Fix an integer $\sigma > 0$. $A^{\sigma}(\Omega)$ denotes the class of all functions f on $\overline{\Omega}$ such that, for each multi-index I with $0 \le |I| \le \sigma$, $D^I f \in A(\Omega)$.

With the norm

(4)
$$||f|| = \sum_{I} \frac{1}{I!} \max_{\Omega} |D^{I}f|,$$

where the sum is taken over all I with $0 \le |I| \le \sigma$ and $I! = i_1! \cdot i_2! \cdots i_n!$ if $I = (i_1, \dots, i_n)$, $A^{\sigma}(\Omega)$ is a Banach algebra.

For $f \in A^{\sigma}(\Omega)$, $(\partial f/\partial z_i)(z)$ is defined for each $z \in \partial \Omega$ by

$$\frac{\partial f}{\partial z_i}(z) = \lim_{\zeta \to z} \frac{\partial f}{\partial z_i}(\zeta),$$

where $\zeta \to z$ from inside Ω , the limit existing by definition of $A^{\sigma}(\Omega)$. We can hence consider the matrix $((\partial f_i/\partial z_i))$ at all points of $\overline{\Omega}$.

Observation 1. Fix $\sigma > 0$. For $f_1, \ldots, f_k \in A^{\sigma}(\Omega)$ conditions (1), (2), (3) fail to be sufficient even when n = 1 and Ω is the unit disk: |z| < 1. We give an example in the Appendix (A.3).

We therefore strengthen condition (2) to

(2') The matrix $((\partial f_i/\partial z_i))$ has rank n for all $z \in \overline{\Omega}$.

Theorem 1. Fix $\sigma \geq 4$. Let Ω be as above. Fix $f_1, \ldots, f_k \in A^{\sigma}(\Omega)$ such that (1), (2'), (3) are satisfied. Then f_1, \ldots, f_k are a set of generators for $A(\Omega)$.

Note. Our hypotheses on Ω are satisfied by all smoothly bounded strictly convex sets in \mathbb{C}^n , in particular by balls.

Theorem 1 admits the following generalisation:

Theorem 1 bis. Let Ω be as in Theorem 1. Let $\mathfrak A$ be a closed subalgebra of $A(\Omega)$ which contains a family $\mathfrak F$ of functions such that:

- (i) $\mathfrak{F} \subset A^{\sigma}(\Omega)$.
- (ii) \mathfrak{F} separates points on $\overline{\Omega}$.
- (iii) For each $z \in \overline{\Omega}$, \exists a finite subset $f_1^{(z)}, \ldots, f_s^{(z)}$ of \mathfrak{F} such that $((\partial f_i^{(z)}/\partial z_j))$ has rank n at z.
- (iv) The spectrum of \mathfrak{A} is $\overline{\Omega}$. Then $\mathfrak{A} = A(\Omega)$.
- 2. Modules over a Banach algebra. A is a commutative semisimple Banach algebra with unit 1. Its spectrum is denoted \mathfrak{M} . Fix k.

 A^k denotes the A-module of all k-tuples (a_1, \ldots, a_k) of elements $a_i \in A$.

Definition 2.1. Fix l < k, and fix elements $\xi^1, \ldots, \xi^l \in A^k$. We say the set ξ^1, \ldots, ξ^l admits a completion if $\exists \xi^{l+1}, \ldots, \xi^k \in A^k$ such that $\xi^1, \xi^2, \ldots, \xi^l, \xi^{l+1}, \ldots, \xi^k$ is a module basis for A^k .

If $\xi = (\xi_1, \dots, \xi_k) \in A^k$ and $M \in \mathfrak{M}$, we set $\xi(M) = (\xi_1(M), \dots, \xi_k(M))$ $\in \mathbb{C}^k$, where, for $a \in A$, a(M) denotes the value at M of the Gel'fand transform

of a. It is clear that, given $\xi^1, \ldots, \xi^l \in A^k$, a necessary condition in order that this set admits a completion is

(5) $\xi^1(M), \ldots, \xi^l(M)$ are linearly independent in \mathbb{C}^k .

We ask: Under what restrictions is (5) a sufficient condition in order that ξ^1, \ldots, ξ^l admits a completion?

Our work is based on results of Forster [1], regarding finitely generated projective modules over a Banach algebra A.

Definition 2.2. An A-module Q is a p-module (finitely generated projective module) if $\exists n$ and a direct sum decomposition $A^n = P \oplus Q$, where P is another module.

Q is free if it has a basis.

Definition 2.3. Let P be a p-module. P has rank k if for every $M \in \mathfrak{M}$, the vector space P/MP has dimension k over the field $A/M \cong \mathbb{C}$.

Lemma 2.1. Assume \mathfrak{M} is connected. Then every p-module P over A has some rank k.

Proof. $\exists n$ and a decomposition

$$A^n = P \oplus Q.$$

Fix $M \in \mathfrak{M}$. We claim:

P/MP is isomorphic to the vector space $V_M = \{\xi(M) \mid \xi \in P\}$.

For let ξ_1 , ξ_2 be elements of P congruent mod MP. Then

$$\xi_1 - \xi_2 = \sum_{i=1}^s m_i p_i, \quad m_i \in M, p_i \in P.$$

Hence $\xi_1(M) = \xi_2(M)$. So the map $[\xi] \to \xi(M)$ is well defined from the elements of P/MP to V_M . It is evidently linear and surjective. Suppose, for some $\xi \in P$, $[\xi] \to 0$, i.e., $\xi(M) = 0$. Let E_1, \ldots, E_n be the standard basis for A^n . $E_i = p_i + q_i, p_i \in P$, $q_i \in Q$, for each i. We have

$$\xi=(\xi_1,\ldots,\xi_n)=\sum_{i=1}^n\xi_iE_i.$$

For each $i, \xi_i(M) = 0$, so $\xi_i \in M$.

$$\xi = \sum_{i=1}^n \xi_i(p_i + q_i) = \sum \xi_i p_i + \sum \xi_i q_i.$$

Since (6) is a direct sum decomposition, $\xi = \sum \xi_i p_i \in MP$, so $[\xi] = 0$.

Thus the map is injective, and the claim is proved. Put $W_M = \{\xi(M) \mid \xi \in Q\}$. By (6), we have

$$\mathbf{C}^n = V_{\mathbf{M}} \oplus W_{\mathbf{M}}.$$

That (7) is a direct sum decomposition is seen by the preceding argument. Thus $n = \dim V_M + \dim W_M$. Fix $M_0 \in \mathfrak{M}$ and put $l = \dim V_{M_0}$. Thus \exists elements

 $\xi^1, \ldots, \xi^l \in P$ with $\xi^1(M_0), \ldots, \xi^l(M_0)$ linearly independent. Hence for some choice of indices i_1, i_2, \ldots, i_l , the determinant

$$D(M) = \begin{vmatrix} \xi_{i_1}^1(M) & \cdots & \xi_{i_l}^1(M) \\ \vdots & & \vdots \\ \xi_{i_l}^1(M) & \cdots & \xi_{i_l}^1(M) \end{vmatrix} \neq 0$$

when $M = M_0$. By continuity, $D(M) \neq 0$ for all M in some neighborhood of M_0 in \mathfrak{M} . Hence dim $V_M \geq l$ for all M in some neighborhood of M_0 . Similarly, dim $W_M \geq \dim W_{M_0} = n - l$ for all M in some neighborhood. But dim $V_M + \dim W_M = n$ for all M. Hence dim $V_M = l$ for all M in some neighborhood of M_0 .

Thus dim V_M is locally constant on \mathfrak{M} . Since \mathfrak{M} is connected, $\exists k$ with dim $V_M = k$ for all $M \in \mathfrak{M}$. Since P/MP is isomorphic to V_M , we have dim P/MP = k for all $M \in \mathfrak{M}$. Q.E.D.

Definition 2.4. Let P be a p-module $\subseteq A^n$. By $P \otimes C(\mathfrak{M})$, we denote the collection of all finite sums $\sum_{i=1}^s f_i p_i$, $f_i \in C(\mathfrak{M})$, $p_i \in P$, regarded as elements of $(C(\mathfrak{M}))^n$.

Note that $A^n \otimes C(\mathfrak{M}) \cong (C(\mathfrak{M}))^n$.

We shall use the following two results from [1]:

Proposition F.1. Let Q be a p-module. If $Q \otimes C(\mathfrak{M})$ is free as a $C(\mathfrak{M})$ -module, then Q is free as an A-module.

Proof. Satz 6 of [1].

Proposition F.2. Let the Banach algebra A have ρ topological generators. Let P_1 , P_2 be two p-modules of rank k such that, for some l,

$$P_1 \oplus A^l \cong P_2 \oplus A^l$$
.

If $k \geq \lceil \rho/2 \rceil$, then $P_1 \cong P_2$.

Proof. Satz 10 of [1].

Lemma 2.2. A is a Banach algebra such that \mathfrak{M} is a connected subset of \mathbb{C}^n . Q is a p-module over A such that

(*)
$$A^k = P \oplus Q$$
, where $P \cong A^l$

for some k, l. If $k - l \ge n$, then Q is free.

Proof. Tensoring (*) with $C = C(\mathfrak{M})$ gives

$$C^k = C^l \oplus \{O \otimes C\}.$$

The rank of $Q \otimes C$ (as C-module) is k-l. $C(\mathfrak{M})$ possesses 2n topological generators, since $\mathfrak{M} \subset \mathbb{C}^n$. $k-l \geq n = \lfloor 2n/2 \rfloor$. Also

$$C^l \oplus C^{k-l} = C^l \oplus \{Q \otimes C\}.$$

By Proposition F.2, it follows that

$$C^{k-l} \cong O \otimes C$$
.

Thus $Q \otimes C$ is free as C-module. By Proposition F.1, this implies that Q is free as A-module. Q.E.D.

Theorem 2.1. Let A be a Banach algebra with spectrum \mathfrak{M} such that \mathfrak{M} is a connected subset of \mathbb{C}^n . Fix k, l satisfying

$$(8) k > 2n, l < n.$$

Fix $\xi^1, \ldots, \xi^l \in A^k$ satisfying (5). Then this set admits a completion.

Proof. We hold n fixed and proceed by induction on l.

Let l=1; we are given $\xi^1 \in A^k$, $\xi^1(M) \neq 0$ for all $M \in \mathfrak{M}$. $\xi^1 = (\xi_1^1, \ldots, \xi_k^1)$. Since the ξ_j^1 have no common zero on \mathfrak{M} , $\exists a_j \in A$ with $\sum_{j=1}^k a_j \xi_j^1 = 1$. Define a map $\varphi: A^k \to A$ by

$$\varphi(x_1,\ldots,x_k) = \sum_{j=1}^k a_j x_j.$$

Then φ is a homomorphism and $\varphi(\xi^1) = 1$. If $\xi \in A^k$, $\xi - \varphi(\xi) \cdot \xi^1 \in \ker \varphi$, so $\xi = \varphi(\xi) \cdot \xi^1 + r$, $r \in \ker \varphi$.

If $\xi = t \cdot \xi^1 + r'$, $t \in A$, $r' \in \ker \varphi$, then $t = \varphi(\xi)$ and r' = r. Thus we have the direct sum decomposition. $A^k = \{\xi^1\} \oplus \ker \varphi$ where $\{\xi^1\}$ is the cyclic module generated by ξ^1 . $\{\xi^1\}$ is isomorphic to A^1 , since $a\xi^1 = 0$ only if a = 0, in view of the fact that $\xi^1(M) \neq 0$ for all M. Lemma 2.2 applies since, by (8), $k - 1 \geq n$, and so $\ker \varphi$ is free.

Thus ker φ has a basis ξ^2, \ldots, ξ^k and so the set $\xi^i, 1 \le i \le k$, is the required completion of ξ^1 .

Now, assume the theorem is true when l is replaced by l-1 and consider a set ξ^1, \ldots, ξ^l satisfying (5) and $l \le n$. Then ξ^1, \ldots, ξ^{l-1} satisfies (5). By the induction hypothesis, $\exists \eta^l, \eta^{l+1}, \ldots, \eta^k \in A^k$ such that $\xi^1, \ldots, \xi^{l-1}, \eta^l, \ldots, \eta^k$ forms a basis of A^k . Denote by Q the module generated by η^l, \ldots, η^k . We have the direct sum decomposition

(9)
$$A^k = \{\xi^1\} \oplus \cdots \oplus \{\xi^{l-1}\} \oplus Q.$$

In particular, $\exists c, \in A, q \in Q$ with

(10)
$$\xi^{l} = \sum_{\nu=1}^{l-1} c_{\nu} \xi^{\nu} + q.$$

For each M with q(M) = 0, we have

$$\xi^{l}(M) = \sum_{\nu=1}^{l-1} c_{\nu}(M) \xi^{\nu}(M),$$

contrary to (5). Hence $q(M) \neq 0$, for all M. Also $Q \cong A^{k-l+1}$. We can hence apply to Q and q the reasoning used above on A^k and ξ^1 and obtain a homomorphism $\varphi' \colon Q \to A$, with $Q = \{q\} \oplus \ker \varphi'$. The rank of Q = k - l + 1, so the rank of $\ker \varphi' = k - l$. But, by (8), $k - l \geq n$. So, by Lemma 2.2, $\ker \varphi'$ is free, and has rank k - l. Let ξ^{l+1}, \ldots, ξ^k be a basis for $\ker \varphi'$.

We claim that $\{\xi^i \mid 1 \le i \le k\}$ is a basis for A^k . This follows directly from (9) and (10). The induction is complete, so the theorem is proved.

The application of Theorem 2.1 which we will require is the following.

Theorem 2.2. Let Ω be a domain in \mathbb{C}^n as in Theorem 1. Fix $\alpha > 0$. Let $(\xi_1^1, \ldots, \xi_k^1), \ldots, (\xi_1^n, \ldots, \xi_k^n)$ be n k-tuples of elements of $A^{\alpha}(\Omega)$, where $k \geq 2n$. Assume that the matrix

$$\begin{pmatrix} \xi_1^1 & \cdots & \xi_k^1 \\ \vdots & & \vdots \\ \xi_1^n & \cdots & \xi_k^n \end{pmatrix}$$

has rank n at each point of $\overline{\Omega}$. Then $\exists k - n$ k-tuples of elements of $A^{\alpha}(\Omega)$, $(a_1^1, \ldots, a_k^1), \ldots, (a_1^{k-n}, \ldots, a_k^{k-n})$ such that the determinant

$$\begin{vmatrix} \xi_1^1 & \cdots & \xi_k^1 \\ \vdots & & \vdots \\ \xi_1^n & \cdots & \xi_k^n \\ a_1^1 & \cdots & a_k^1 \\ \vdots & & \vdots \\ a_k^{k-n} & \cdots & a_k^{k-n} \end{vmatrix} = 1$$

at each point $z \in \overline{\Omega}$.

Proof. The spectrum of A^{α} coincides with $\overline{\Omega}$. (See Appendix (A.2).) Thus the spectrum is a connected subset of \mathbb{C}^n . The assumption on the matrix $((\xi_i^i))$ tells us that the vectors $\xi^i(M) = (\xi_i^i(M), \dots, \xi_k^i(M)), i = 1, \dots, n$, are independent at each M in the spectrum, i.e., satisfy (5).

Theorem 2.1 thus applies, and yields $\xi^{n+1}, \ldots, \xi^k \in (A^{\alpha}(\Omega))^k$ which together with ξ^1, \ldots, ξ^n form a basis of $(A^{\alpha}(\Omega))^k$. Elementary algebra now gives that the determinant

is a unit in the ring $A^{\alpha}(\Omega)$. Without loss of generality that determinant then equals 1. We are done.

3. Proof of Theorems 1 and 1 bis. Let now Ω and f_1, \ldots, f_k satisfy the hypothesis of Theorem 1. If k < 2n, define $f_{k+1} = \cdots = f_{2n} = f_k$. Then the set

 f_1, \ldots, f_{2n} again satisfies (1), (2'), (3). Also

$$[f_1,\ldots,f_k\mid\overline{\Omega}]=[f_1,\ldots,f_{2n}\mid\overline{\Omega}].$$

If we can show that $[f_1, \ldots, f_{2n} \mid \overline{\Omega}] = A(\Omega)$, then of course $[f_1, \ldots, f_k \mid \overline{\Omega}] = A(\Omega)$. Thus it is no loss of generality to suppose $k \geq 2n$, and we do so from now on.

For $i=1,\ldots,n$, put $\mathbf{p}_i=(\partial f_1/\partial z_i,\ldots,\partial f_k/\partial z_i)$. Each $\partial f_j/\partial z_i\in A^{\sigma-1}(\Omega)$. Put $A=A^{\sigma-1}(\Omega)$. Then $\mathbf{p}_i\in A^k$ for $i=1,2,\ldots,n$. Hypothesis (2') gives exactly that, for each $M\in\overline{\Omega}$, the vectors $\mathbf{p}_1(M),\ldots,\mathbf{p}_n(M)$ are independent in \mathbf{C}^k .

By Theorem 2.2, we can select vectors such that the determinant

$$\begin{vmatrix} \mathbf{p}_{1} \\ \vdots \\ \mathbf{p}_{n} \\ \mathbf{a}_{1} \\ \vdots \\ \mathbf{a}_{k-n} \end{vmatrix} = \begin{vmatrix} \partial f_{1}/\partial z_{1} & \cdots & \partial f_{k}/\partial z_{1} \\ \vdots & & \vdots \\ \partial f_{1}/\partial z_{n} & \cdots & \partial f_{k}/\partial z_{n} \\ a_{1}^{1} & \cdots & a_{k}^{1} \\ \vdots & & \vdots \\ a_{k}^{k-n} & \cdots & a_{k}^{k-n} \end{vmatrix} = 1$$

identically on $\overline{\Omega}$. Each $a_j^i \in A = A^{\sigma-1}(\Omega)$. We choose an open neighborhood U of $\overline{\Omega}$ in \mathbb{C}^n such that each of the functions f_i , $1 \le i \le k$, admits an extension to U lying in $C^{\sigma}(U)$ and each a_i^i admits an extension to an element of $C^{\sigma-1}(U)$.

We form the product domain in \mathbb{C}^k : $U \times \mathbb{C}^{k-n} = \{(z, w) \mid z \in U, w \in \mathbb{C}^{k-n}\}$. We define a map χ of $U \times \mathbb{C}^{k-n}$ into \mathbb{C}^k as follows: If $(z, w) \in U \times \mathbb{C}^{k-n}$,

$$\chi(z,w) = \left(f_1(z) + \sum_{j=1}^{k-n} a_1^j(z)w_j, \ldots, f_k(z) + \sum_{j=1}^{k-n} a_k^j(z)w_j\right).$$

Note that χ is of class $\sigma - 1$ in $U \times \mathbb{C}^{k-n}$.

Lemma 3.1. \exists an open set V in \mathbb{C}^k containing $\overline{\Omega} \times \{0\} = \{(z,0) \in \mathbb{C}^k \mid z \in \overline{\Omega}\}$, such that χ is a diffeomorphism of class $\sigma - 1$ on V.

Proof of Lemma 3.1. Denote by D_{χ} the Jacobian determinant of χ when we regard χ as a map from a domain in \mathbb{R}^{2k} into \mathbb{R}^{2k} . We have, for $z \in \Omega$,

$$D_{\chi}(z,0) = \begin{vmatrix} \partial f_1/\partial z_1 & \cdots & \partial f_k/\partial z_1 \\ \vdots & & \vdots \\ \partial f_1/\partial z_n & \cdots & \partial f_k/\partial z_n \\ a_1^1 & \cdots & a_k^1 \\ a_1^2 & \cdots & a_k^2 \\ \vdots & & \vdots \\ a_1^{k-n} & \cdots & a_k^{k-n} \end{vmatrix}$$

in modulus squared, hence = 1 by choice of the a_i^j . By continuity this relation remains true for $z \in \overline{\Omega}$.

Since $D_{\chi}(z) \neq 0$ for each $z \in \overline{\Omega} \times \{0\}$, χ is a local homeomorphism in \mathbb{C}^k at each such point. Also χ is one-to-one on $\overline{\Omega} \times \{0\}$ by (1). It follows that \exists an open set V in \mathbb{C}^k with $\overline{\Omega} \times \{0\} \subset V$ such that χ is one-to-one in V and with $D_{\chi} \neq 0$ at each point of V. Hence χ is a diffeomorphism on V, and we are done.

Notations. Let F be a holomorphic map from an open set in \mathbb{C}^N into \mathbb{C}^N , $F = (F_1, \dots, F_N)$. We denote by J_F the Jacobian matrix

$$\begin{bmatrix} \partial F_1/\partial \zeta_1 & \cdots & \partial F_1/\partial \zeta_N \\ \vdots & & \vdots \\ \partial F_N/\partial \zeta_1 & \cdots & \partial F_N/\partial \zeta_N \end{bmatrix}.$$

Let ρ be the defining function of Ω . For each t > 0, put $\varphi_t(z, w) = \rho(z) + t|w|^2$. For large t, the set $\{(z, w) \mid \varphi_t(z, w) \leq 0\} \subset V$, where V is as in Lemma 3.1. Fix such a t, put $\varphi = \varphi_t$ and put

$$\mathfrak{E} = \{(z, w) \in U \times \mathbb{C}^{k-n} \mid \varphi(z, w) < 0\}.$$

Thus $\overline{\mathfrak{E}} \subset V$. Also χ is holomorphic in \mathfrak{E} . Put $\varphi^* = \varphi \circ \chi^{-1}$. φ^* is a smooth function defined in $\chi(V)$.

Lemma 3.2. φ^* is strictly plurisubharmonic in a neighborhood of $\overline{\chi(\mathfrak{E})}$.

Proof. Fix $p = (z, w) \in \mathfrak{E}$. The entries of the matrix $J_{\chi}(p)$ involve the numbers $(\partial f_i/\partial z_j)(z)$ and $a^{\alpha}_{\beta}(z)$, which are bounded independently of p, since if $p \in \mathfrak{E}$ then $z \in \Omega$ and the f_i and $a^{\alpha}_{\beta} \in A^{\sigma-1}(\overline{\Omega})$. Also |w| is bounded for $(z, w) \in \mathfrak{E}$. Thus \exists constant M such that $|J_{\chi}(p)\eta| \leq M|\eta|$ for all $\eta \in \mathbb{C}^k$ and all $p \in \mathfrak{E}$. Also $(J_{\chi}(p))^{-1} = J_{\chi^{-1}}(\chi(p))$, whence, for all $\zeta \in \mathbb{C}^k$,

$$|\zeta| = |J_{\chi}(p)\{J_{\chi^{-1}}(\chi(p))\zeta\}| \le M|J_{\chi^{-1}}(\chi(p))\zeta|$$

and so

$$|J_{\chi^{-1}}(\chi(p))\zeta| \geq \frac{|\zeta|}{M}.$$

Thus, for all $p^* \in \chi(\mathfrak{E})$ and all $\xi \in \mathbb{C}^k$, we have

(11)
$$|J_{\chi^{-1}}(p^*)\xi| \ge \frac{|\xi|}{M}.$$

Also, since φ is strictly plurisubharmonic on a neighborhood of $\overline{\mathfrak{E}}$, \exists constant c > 0 with

(12)
$$\sum_{i,j} \frac{\partial^2 \varphi}{\partial z_i \partial \overline{z}_j}(p) \eta_i \overline{\eta}_j \ge c |\eta|^2$$

for all $p \in \mathfrak{E}$, $\eta \in \mathbf{C}^k$.

Denote $\chi^{-1} = (\psi_1, \dots, \psi_k)$. Each ψ_j is a smooth function on $\chi(V)$ and is holomorphic on $\chi(\mathfrak{E})$. Fix $\xi = (\xi_1, \dots, \xi_k) \in \mathbb{C}^k$ and fix $p \in \mathfrak{E}$. Put $p^* = \chi(p)$,

 $\eta = J_{x^{-1}}(p^*)\xi$. Thus, for each j,

$$\eta_j = \sum_{\alpha} \frac{\partial \psi_j}{\partial \zeta_{\alpha}}(p^*) \xi_{\alpha}.$$

Direct calculation gives

$$\sum_{\alpha,\beta} \frac{\partial^2 \varphi^*}{\partial \zeta_\alpha} \overline{\partial \zeta_\beta}(p^*) \xi_\alpha \bar{\xi}_\beta = \sum_{i,j} \frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j}(p) \eta_i \overline{\eta}_j.$$

By (12), the right-hand side

$$\geq c|\eta|^2 = c|J_{\chi^{-1}}(p^*)\xi|^2$$

$$\geq c \cdot \frac{|\xi|^2}{M^2}, \quad \text{by (11)}.$$

This inequality holds for all $p \in \mathfrak{E}$, hence by continuity for all $p \in \mathfrak{E}$. The assertion of Lemma 3.2 follows.

Proof of Theorem 1. Note first that

$$\chi(\mathfrak{E}) = \{ \zeta \in \chi(V) | \varphi^*(\zeta) < 0 \}.$$

It is easy to see that grad $\varphi^* \neq 0$ on the boundary of $\chi(\mathfrak{E})$. Hence the domain $\chi(\mathfrak{E})$ satisfies the hypothesis of the approximation theorem of Henkin [3], and hence if F is any function continuous in $\overline{\chi(\mathfrak{E})}$, holomorphic in $\chi(\mathfrak{E})$, then \exists a sequence $\{F_n\}$ of functions with the following properties:

For each n, F_n is holomorphic in some neighborhood W_n of $\overline{\chi(\mathfrak{E})}$, and $F_n \to F$ uniformly on $\overline{\chi(\mathfrak{E})}$.

Fix $f \in A(\Omega)$. Let $(z, w) \in \mathfrak{E}$. Then $z \in \Omega$. For $(z, w) \in \overline{\mathfrak{E}}$, put $\tilde{f}(z, w) = f(z)$. \tilde{f} is then continuous in $\overline{\mathfrak{E}}$, holomorphic in \mathfrak{E} .

 $\tilde{f}(\chi^{-1})$ is hence continuous in $\overline{\chi(\mathfrak{E})}$, holomorphic in $\chi(\mathfrak{E})$. By the preceding, we can choose neighborhoods W_n of $\overline{\chi(\mathfrak{E})}$ and F_n holomorphic in W_n with $F_n \to \tilde{f}(\chi^{-1})$ uniformly on $\overline{\chi(\mathfrak{E})}$. Put

$$K = \{\chi(z,0) \mid z \in \overline{\Omega}\}.$$

Then $K \subset \overline{\chi(\mathfrak{E})}$. By (3), K is polynomially convex. The Oka-Weil theorem allows us to approximate F_n uniformly by polynomials on K, and so we obtain a sequence of polynomials P_n in the coordinates with $P_n \to \tilde{f}(\chi^{-1})$ uniformly on K. Hence $P_n(\chi(z,0)) \to f(z)$ uniformly on $\overline{\Omega}$. But $\chi(z,0) = (f_1(z),\ldots,f_k(z))$. So $f \in [f_1,\ldots,f_k \mid \overline{\Omega}]$. Q.E.D.

Proof of Theorem 1 bis. Condition (iii) gives that each $z \in \overline{\Omega}$ has a neighborhood U_z such that \exists a finite subset of \mathfrak{F} separating points in U_z . This, plus the compactness of $\overline{\Omega}$, implies that \exists a finite set of elements $f_1, \ldots, f_l \in \mathfrak{F}$ such that each point of $\overline{\Omega}$ has a neighborhood where f_1, \ldots, f_l separate points. Using this fact and (ii), a standard argument shows \exists a finite set $f_{l+1}, \ldots, f_k \in \mathfrak{F}$ which

together separate points on $\overline{\Omega}$. The set $\{f_i \mid 1 \le i \le k\}$ then satisfies our conditions (1) and (2'). Using the functions f_1, \ldots, f_k we proceed as in the proof of Theorem 1 to obtain a map χ and a set \mathfrak{E} as earlier. The situation differs from the preceding one in that

$$K = \{\chi(z,0) \mid z \in \overline{\Omega}\} = \{(f_1(z), \dots, f_k(z)) \mid z \in \overline{\Omega}\}\$$

is not necessarily polynomially convex. However, we can do the following: Fix $f \in A(\Omega)$. Define $\tilde{f}(z, w) = f(z)$, as earlier, for $(z, w) \in \overline{\mathfrak{C}}$. By the proof of Theorem 1, $\exists F_n$ holomorphic in a neighborhood of K with

$$(13) F_n \to \tilde{f}(\chi^{-1})$$

uniformly on K. Since the spectrum of $\mathfrak A$ coincides with $\overline{\Omega}$ by (iv), the operational calculus applied to $\mathfrak A$ yields that, if $g_n = F_n(f_1, \ldots, f_k)$, g_n lies in $\mathfrak A$, for each n. By (13), $g_n(z) \to f(z)$ uniformly on $\overline{\Omega}$. Hence $f \in \mathfrak A$. Q.E.D.

Appendix. (A.1) Let Ω be a domain in \mathbb{C}^N , $\Omega = \{z \mid \rho(z) < 0\}$, where ρ is strictly plurisubharmonic in a neighborhood of $\overline{\Omega}$ and grad $\rho \neq 0$ on $\partial\Omega$. Then the spectrum of $A(\Omega)$ is $\overline{\Omega}$.

Fix $\varepsilon > 0$ and put $\Omega_{\varepsilon} = \{z \mid \rho(z) < \varepsilon\}$. For small ε , we have that Ω_{ε} is a Stein manifold and $\overline{\Omega}$ is convex with respect to the algebra $H(\Omega_{\varepsilon})$ of all functions holomorphic in Ω_{ε} . Let B denote the uniform closure on $\overline{\Omega}$ of the restrictions to $\overline{\Omega}$ of functions in $H(\Omega_{\varepsilon})$. Since $\overline{\Omega}$ is convex with respect to $H(\Omega_{\varepsilon})$, B contains the restriction to $\overline{\Omega}$ of each function F holomorphic in some neighborhood of $\overline{\Omega}$. Hence, by the approximation theorem in [3], $B = A(\Omega)$. On the other hand, by Theorem 7.2.10 of [4], the spectrum of B coincides with $\overline{\Omega}$. We are done.

(A.2) Let Ω be as in (A.1) and fix σ . The spectrum of $A^{\sigma}(\Omega)$ coincides with $\overline{\Omega}$. For fix a homomorphism $m: A^{\sigma}(\Omega) \to \mathbb{C}$. Let $f \in A^{\sigma}(\Omega)$.

Put $\lambda = m(f)$. If $|\lambda| > \max_{\overline{\Omega}} |f|$, $f - \lambda$ is invertible in $A^{\sigma}(\Omega)$, contradicting that $m(f - \lambda) = 0$. Hence $|\lambda| \le \max_{\overline{\Omega}} |f|$. It follows that m extends to an element of the spectrum of the closure of $A^{\sigma}(\Omega)$ in $A(\Omega)$. But that closure is $A(\Omega)$, by the approximation theorem in [3]. Hence, by (A.1), m coincides with a point of $\overline{\Omega}$, and we are done.

(A.3) Consider the open disk E: |z| < 1 in the plane. Put

$$\varphi(z) = \exp(-(1+z)/(1-z)).$$

Put $f = (z - 1)^3 \cdot \varphi$, $g = (z - 1)^4 \cdot \varphi$.

Assertion. $f, g \in A^1(E)$ and satisfy (1), (2), (3) on E. Yet f, g fail to generate A(E).

The fact that $f, g \in A^1(E)$ as well as conditions (1) and (2) are checked by direct calculation. The argument to prove (3) is longer, and we do not give it here.

The fact that $[f,g \mid \overline{E}] \neq A(E)$ is seen as follows: Fix $h \in [f,g \mid \overline{E}]$ with h(1) = 0. Choose a sequence $g_n \to h$ uniformly on \overline{E} with each g_n a polynomial

in f and g. We may assume $g_n(1) = 0$, all n.

$$g_n = \sum_{\alpha,\beta>0} c_{\alpha,\beta}^{(n)} f^{\alpha} \cdot g^{\beta}, \qquad c_{00}^{(n)} = g_n(1) = 0.$$

Hence $g_n = h_n \cdot \varphi$, where $h_n \in A(E)$. Since $|\varphi| = 1$ on ∂E , $g_n \overline{\varphi} = h_n$, so $h_n \to h \overline{\varphi}$ in the uniform norm on |z| = 1. Hence $h \overline{\varphi} \in A(E)$ or $h = H \cdot \varphi$, $H \in A(E)$. Hence, every $h \in [f, g \mid \overline{E}]$ with h(1) = 0 has φ as a factor, and so $[f, g \mid \overline{E}] \neq A(E)$, as claimed.

Acknowledgment. We want to thank Douady for an enlightening conversation. Note 1. Recall that condition (3) required the set $K = \{(f_1(z), \ldots, f_k(z)) \mid z \in \overline{\Omega}\}$ to be polynomially convex.

When Ω is the unit disk in \mathbb{C} , condition (3) is superfluous, i.e., is implied by (1) and (2') assuming the $f_i \in A^1(\Omega)$. This was proved by J.-E. Björk in [11]. For the case when the f_i are holomorphic on the closed disk, it was proved by Wermer in [8].

For the case when Ω is the disk in the plane, our Theorem 1 is known and is due to R. Blumenthal (to appear). This proof uses the measures orthogonal to the algebra. He needs only one derivative for the f_i .

In the case when Ω is the ball in \mathbb{C}^2 , condition (3) is no longer a consequence of (1) and (2'). The example in Wermer [9] shows this.

Questions related to the work of the present paper are studied by Gamelin [2, Theorem 7], and by Sakai in [6] and [7].

Note 2. Every smoothly bounded strictly pseudoconvex domain Ω in \mathbb{C}^n satisfies our condition; i.e., one can find a function ρ smooth and strictly plurisubharmonic in a neighborhood of $\overline{\Omega}$ such that $\Omega = \{z \mid \rho(z) < 0\}$ and grad $\rho \neq 0$ on $\partial\Omega$.

Added in proof. We have recently noted the paper by V. Iu. Lin, Holomorphic fiber bundles and multi-valued functions of an element of a Banach algebra, Functional Anal. Appl. 7 (1973), 43-51 (Russian). This paper overlaps with §2 of this article.

REFERENCES

- 1. O. Forster, Funktionentheoretische Hilfsmittel in der Theorie der kommutativen Banach-Algebren, multigraphed (1971).
- 2. T. W. Gamelin, *Polynomial approximation on thin sets*, Lecture Notes in Math., vol. 184, Springer-Verlag, Berlin and New York, 1970, pp. 50-78.
- 3. G. M. Henkin, Integral representation of functions holomorphic in strictly pseudo-convex domains and some applications, Mat. Sb. 78 (120) (1969), 611-632 = Math. USSR Sb. 7 (1969), 597-616. MR 40 #2902.
- 4. L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N.J., 1966. MR 34 #2933.
- 5. I. Lieb, Ein Approximationssatz auf streng pseudokonvexen Gebieten, Math. Ann. 184 (1969), 56-60. MR 41 #7146.
- A. Sakai, Localisation theorem for holomorphic approximation on open Riemann surfaces, J. Math. Soc. Japan 24 (1972), 189–197.

- 7. A. Sakai, Uniform approximation on compact subsets of complex manifolds (to appear).
- 8. J. Wermer, Rings of analytic functions, Ann. of Math. (2) 67 (1958), 497-516. MR 20 #3299.
- 9.——, An example concerning polynomial convexity, Math. Ann. 139 (1959), 147-150. MR 22 #12238.
- 10. N. Kerzman, Hölder and L^p estimates for solutions of $\delta u = f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301-379. MR 43 #7658.
- 11. J.-E. Björk, Holomorphic convexity and analytic structures in Banach algebras, Ark. Mat. 9 (1971), no. 1, 39-54.

FACULTE DES SCIENCES, MATHÉMATIQUE, ORSAY, FRANCE

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND 02912